Code: CE2T2, CS2T1, EC2T1, EM2T2, EE2T1, IT2T3, ME2T1, AE2T1

## I B. Tech-II Semester-Regular Examinations - July 2013

## ENGINEERING MATHEMATICS - II (Common for All Branches)

Duration: 3 hours

Marks: 5x14=70

Answer any FIVE questions. All questions carry equal marks

1 a) For the matrix  $A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 0 & -1 & -1 \end{bmatrix}$  find non singular matrices P and Q such that PAQ is in the normal form.

b) Solve the following equations by Gauss-Seidel method 5x + 2y + z = 12, x + 4y + 2z = 15, x + 2y + 5z = 20 7 M

2 a) Find the characteristic equation of the matrix

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$$
 and hence compute  $A^{-1}$ .

Also find the matrix represented by

$$A^{8} - 5A^{7} + 7A^{6} - 3A^{5} + A^{4} - 5A^{3} + 8A^{2} - 2A + I$$

b) Prove that the product of Eigen values of Matrix is equal to its determinant.

7 M

3 a) Obtain the Fourier series for  $f(x) = \pi x$  in  $0 \le x \le 2$ 

7 M

b) Find the Half range cosine and sine series for the function  $f(x) = x^2$  in the range  $0 \le x \le \pi$ .

7 M

4 a) Find the Fourier cosine Transform of  $e^{-x^2}$ .

7 M

b) State and prove Convolution Theorem for Fourier Transforms.

7 M

5 a) Show that  $z(cosn\theta) = \frac{z(z-cos\theta)}{z^2-2zcos\theta+1}$ 

4 M

b) If  $U(z) = \frac{2z^2 + 5z + 14}{(z-1)^4}$  evaluate  $u_2$  and  $u_3$ 

4 M

c) Using Z-transform solve  $u_{n+2} + 4u_{n+1} + 3u_n = 3^n$ , with  $u_0 = 0, u_1 = 1$ .

6 a) Show that 
$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

4 M

b) Prove that 
$$\int_0^1 \frac{x^2}{\sqrt{1-x^4}} dx$$
.  $\int_0^1 \frac{1}{\sqrt{1+x^4}} dx = \frac{\pi}{4\sqrt{2}}$ 

4 M

c) Prove that 
$$\iint_D x^{l-1} y^{m-1} dx dy = \frac{\Gamma(l)\Gamma(m)}{\Gamma(l+m+1)} h^{l+m}$$
 where D is the domain  $x \ge 0, y \ge 0 \& x+y \le h$ .

6 M

7 a) Predict y at x = 3.75 by fitting a power curve to the data

| X | 1    | 2    | 3    | 4    | 5    | 6    |
|---|------|------|------|------|------|------|
| y | 2.98 | 4.26 | 5.21 | 6.10 | 6.80 | 7.50 |

7 M

b) The results of measurement of electric resistance R of a copper bar at various temperatures  $t^0$  C are listed below

| t | 19 | 25 | 35 | 36 | 40 | 45 | 50 |
|---|----|----|----|----|----|----|----|
| R | 76 | 77 | 79 | 80 | 82 | 83 | 85 |

Find a relation R=a+bt where a and b are constants to be determined.

8 a) Solve 
$$\frac{\partial^2 z}{\partial x \partial y} = sinxsiny$$
, for which  $\frac{\partial z}{\partial y} = -2siny$  where  $x = 0 \& z = 0$  when y is odd multiple of  $\frac{\pi}{2}$ .

7 M

b) Solve 
$$(mz - ny)\frac{\partial z}{\partial x} + (nx - lz)\frac{\partial z}{\partial y} = (ly - mx)$$